108 research outputs found

    Self-similar aftershock rates

    Get PDF
    In many important systems exhibiting crackling noise --- intermittent avalanche-like relaxation response with power-law and, thus, self-similar distributed event sizes --- the "laws" for the rate of activity after large events are not consistent with the overall self-similar behavior expected on theoretical grounds. This is in particular true for the case of seismicity and a satisfying solution to this paradox has remained outstanding. Here, we propose a generalized description of the aftershock rates which is both self-similar and consistent with all other known self-similar features. Comparing our theoretical predictions with high resolution earthquake data from Southern California we find excellent agreement, providing in particular clear evidence for a unified description of aftershocks and foreshocks. This may offer an improved way of time-dependent seismic hazard assessment and earthquake forecasting

    Complex networks of earthquakes and aftershocks

    Get PDF
    We invoke a metric to quantify the correlation between any two earthquakes. This provides a simple and straightforward alternative to using space-time windows to detect aftershock sequences and obviates the need to distinguish main shocks from aftershocks. Directed networks of earthquakes are constructed by placing a link, directed from the past to the future, between pairs of events that are strongly correlated. Each link has a weight giving the relative strength of correlation such that the sum over the incoming links to any node equals unity for aftershocks, or zero if the event had no correlated predecessors. A correlation threshold is set to drastically reduce the size of the data set without losing significant information. Events can be aftershocks of many previous events, and also generate many aftershocks. The probability distribution for the number of incoming and outgoing links are both scale free, and the networks are highly clustered. The Omori law holds for aftershock rates up to a decorrelation time that scales with the magnitude, mm, of the initiating shock as tcutoff10βmt_{\rm cutoff} \sim 10^{\beta m} with β3/4\beta \simeq 3/4. Another scaling law relates distances between earthquakes and their aftershocks to the magnitude of the initiating shock. Our results are inconsistent with the hypothesis of finite aftershock zones. We also find evidence that seismicity is dominantly triggered by small earthquakes. Our approach, using concepts from the modern theory of complex networks, together with a metric to estimate correlations, opens up new avenues of research, as well as new tools to understand seismicity.Comment: 12 pages, 12 figures, revtex

    Nonequilibrium temperature response for stochastic overdamped systems

    Get PDF
    The thermal response of nonequilibrium systems requires the knowledge of concepts that go beyond entropy production. This is showed for systems obeying overdamped Langevin dynamics, either in steady states or going through a relaxation process. Namely, we derive the linear response to perturbations of the noise intensity, mapping it onto the quadratic response to a constant small force. The latter, displaying divergent terms, is explicitly regularized with a novel path-integral method. The nonequilibrium equivalents of heat capacity and thermal expansion coefficient are two applications of this approach, as we show with numerical examples.Comment: 23 pages, 2 figure

    Models of DNA denaturation dynamics: universal properties

    Full text link
    We briefly review some of the models used to describe DNA denaturation dynamics, focusing on the value of the dynamical exponent zz, which governs the scaling of the characteristic time τLz\tau\sim L^z as a function of the sequence length LL. The models contain different degrees of simplifications, in particular sometimes they do not include a description for helical entanglement: we discuss how this aspect influences the value of zz, which ranges from z=0z=0 to z3.3z \approx 3.3. Connections with experiments are also mentioned

    Inflow rate, a time-symmetric observable obeying fluctuation relations

    Full text link
    While entropy changes are the usual subject of fluctuation theorems, we seek fluctuation relations involving time-symmetric quantities, namely observables that do not change sign if the trajectories are observed backward in time. We find detailed and integral fluctuation relations for the (time integrated) difference between "entrance rate" and escape rate in mesoscopic jump systems. Such "inflow rate", which is even under time reversal, represents the discrete-state equivalent of the phase space contraction rate. Indeed, it becomes minus the divergence of forces in the continuum limit to overdamped diffusion. This establishes a formal connection between reversible deterministic systems and irreversible stochastic ones, confirming that fluctuation theorems are largely independent of the details of the underling dynamics.Comment: v3: published version, slightly shorter title and abstrac

    A thermodynamic uncertainty relation for a system with memory

    Full text link
    We introduce an example of thermodynamic uncertainty relation (TUR) for systems modeled by a one-dimensional generalised Langevin dynamics with memory, determining the motion of a micro-bead driven in a complex fluid. Contrary to TURs typically discussed in the previous years, our observables and the entropy production rate are one-time variables. The bound to the signal-to-noise ratio of such state-dependent observables only in some cases can be mapped to the entropy production rate. For example, this is true in Markovian systems. Hence, the presence of memory in the system complicates the thermodynamic interpretation of the uncertainty relation

    Thermal response in driven diffusive systems

    Full text link
    Evaluating the linear response of a driven system to a change in environment temperature(s) is essential for understanding thermal properties of nonequilibrium systems. The system is kept in weak contact with possibly different fast relaxing mechanical, chemical or thermal equilibrium reservoirs. Modifying one of the temperatures creates both entropy fluxes and changes in dynamical activity. That is not unlike mechanical response of nonequilibrium systems but the extra difficulty for perturbation theory via path-integration is that for a Langevin dynamics temperature also affects the noise amplitude and not only the drift part. Using a discrete-time mesh adapted to the numerical integration one avoids that ultraviolet problem and we arrive at a fluctuation expression for its thermal susceptibility. The algorithm appears stable under taking even finer resolution.Comment: 10 pages, 3 figure

    Correlated earthquakes in a self-organized model

    Get PDF
    Motivated by the fact that empirical time series of earthquakes exhibit long-range correlations in space and time and the Gutenberg-Richter distribution of magnitudes, we propose a simple fault model that can account for these types of scale-invariance. It is an avalanching process that displays power-laws in the event sizes, in the epicenter distances as well as in the waiting-time distributions, and also aftershock rates obeying a generalized Omori law. We thus confirm that there is a relation between temporal and spatial clustering of the activity in this kind of models. The fluctuating boundaries of possible slipping areas show that the size of the largest possible earthquake is not always maximal, and the average correlation length is a fraction of the system size. This suggests that there is a concrete alternative to the extreme interpretation of self-organized criticality as a process in which every small event can cascade to an arbitrary large one: the new picture includes fluctuating domains of coherent stress field as part of the global self-organization. Moreover, this picture can be more easily compared with other scenarios discussing fluctuating correlations lengths in seismicity.Comment: 8 pages, 10 figure

    The modified Sutherland--Einstein relation for diffusive nonequilibria

    Full text link
    There remains a useful relation between diffusion and mobility for a Langevin particle in a periodic medium subject to nonconservative forces. The usual fluctuation-dissipation relation easily gets modified and the mobility matrix is no longer proportional to the diffusion matrix, with a correction term depending explicitly on the (nonequilibrium) forces. We discuss this correction by considering various simple examples and we visualize the various dependencies on the applied forcing and on the time by means of simulations. For example, in all cases the diffusion depends on the external forcing more strongly than does the mobility. We also give an explicit decomposition of the symmetrized mobility matrix as the difference between two positive matrices, one involving the diffusion matrix, the other force--force correlations
    corecore